激光写光电子学进展

新型荧光碳量子点的制备及其在2,4,6-三硝基 苯酚检测中的应用

邓祥^{1,2*},黄小梅^{1,2,3},陈伟¹,赵华利¹

¹四川文理学院化学化工学院,四川 达州 635000; ²特色植物开发研究四川省高校重点实验室,四川 达州 635000; ³四川省高等学校绿色化学重点实验室,四川 自贡 643000

摘要 以中药材厚朴为碳源,采用一步微波法制备得到新型荧光碳量子点。通过透射电子显微镜和X射线光电子能谱 (仪对荧光碳量子点进行了尺寸、形貌和元素组成表征,通过荧光光谱和吸收光谱对碳量子点进行了光学性能表征。基于 2,4,6-三硝基苯酚对碳量子点的荧光猝灭作用,建立了以碳量子点作为荧光探针检测2,4,6-三硝基苯酚的新方法。实 验结果表明:荧光碳量子点平均粒径为5 nm,主要成分为碳元素和氧元素,最大吸收波长为280 nm,最大激发波长为 320 nm,量子产率为0.14。在最佳实验条件下,空白体系荧光强度与样品体系荧光强度比值的常用对数与2,4,6-三硝 基苯酚浓度呈良好的线性关系,线性范围为0.8~80 μmol/L,检测限为160 nmol/L。该结果可用于对实际样品中2,4, 6-三硝基苯酚的快速、灵敏和高效检测。

关键词 厚朴;荧光碳量子点;2,4,6-三硝基苯酚;荧光探针 **中图分类号** O436 **文献标志码** A

DOI: 10.3788/LOP202259.2130002

Preparation Novel Fluorescent Carbon Dots and Its Application in 2, 4, 6-Trinitrophenol Detection

Deng Xiang^{1,2*}, Huang Xiaomei^{1,2,3}, Chen Wei¹, Zhao Huali¹

¹Department of Chemistry and Chemical Engineering, Sichuan University of Arts and Science,

Dazhou 635000, Sichuan, China;

²Sichuan Key Laboratory of Characteristic Plant Development Research, Dazhou 635000, Sichuan, China; ³Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Zigong 643000, Sichuan, China

Abstract In this work, novel fluorescent carbon dots were prepared via the microwave method utilizing cortex magnoliae officinalis as a carbon source. The size, morphology, and elemental composition of the fluorescent carbon dots were characterized using transmission electron microscopy and X-ray photoelectron spectroscopy. Optical properties of the carbon dots were also characterized based on fluorescence and absorption spectra. Considering the fluorescent quenching of the carbon dots, a new method was developed for the detection of 2, 4, 6-trinitrophenol using the carbon dots as a fluorescent probe. Experimental results reveal that the average diameter of the fluorescent carbon dots is 5 nm, and the main components are carbon and oxygen. Further, the maximum absorption wavelength is 280 nm, and the maximum excitation wavelength is 320 nm; notably, a quantum yield of 0.14 is achieved. Under optimal experimental conditions, the logarithm of the ratio of the fluorescent intensities without and with samples and the concentration of 2, 4, 6-trinitrophenol exhibits a good linear relationship, with a linear range of 0.8-80 µmol/L. Further, the limit of detection is 160 nmol/L. Those results are expected to facilitate the rapid, sensitive, and efficient detection of 2, 4, 6-trinitrophenol in authentic samples.

Key words cortex magnoliae officinalis; fluorescent carbon dots; 2,4,6-trinitrophenol; fluorescent probe

收稿日期: 2021-12-23; 修回日期: 2022-01-28; 录用日期: 2022-02-21

基金项目:四川省科技厅应用基础研究项目(2019YJ0307)、特色植物开发研究四川省高校重点实验室项目(TSZW2004, TSZW2005)、绿色催化四川省高校重点实验室开放基金(LYJ1802)、国家级大学生创新创业训练计划项目(202110644011)、四川 文理学院大学生科研项目(X2021Z020)

通信作者: *dxw8066031@163.com

1引言

2,4,6-三硝基苯酚(TNP)是黄色针状晶体,属硝 基酚类化合物,是一种重要的化工原料和有机合成中 间体^[12]。在被发明之后的100多年里,由于其呈鲜艳 的黄色,一直被用作染料,后因其爆炸性质被应用于炸 药,其爆炸效能优于2,4,6-三硝基甲苯(TNT)^[3]。目 前,TNP被广泛应用于农药、医药、皮革和染料工业, 主要用于制造酸性染料、炸药、火箭燃料、除雾剂、杀菌 剂、收敛剂和氯化苦剂等^[46]。TNP具有很强的刺激 性,可以通过吸食或皮肤吸收进入人体,对人的视觉系 统、消化系统和呼吸系统造成较大的伤害,长期接触可 引起食欲减退、头痛头晕和恶心呕吐等症状,甚至可引 起出血性肾炎、末梢神经炎和膀胱刺激征等症状,对人 类健康造成一定程度的危害,被认为是一种环境污染 物^[7-10]。因此,发展一种能够简便、快速、高效地检测 TNP的方法具有十分重要的意义。

1948年,Förster^[11]首次提出荧光共振能量转移 (FRET)理论,随后FRET技术作为一种有效的光物 理分析方法在物理、化学、医学及生物领域得到了广泛 的研究和应用。2004年,美国南卡罗莱纳大学首先发 现了荧光碳量子^[12]。荧光碳量子点(Carbon dots, Cdots)是一种新型无机纳米荧光碳材料,相对于传统半 导体量子点和有机荧光染料,荧光碳量子点不仅保持 了碳材料毒性小、生物相容性好等优点,而且还拥有 合成方便、原料丰富、易于功能化和光学性质良好等特 点,目前已开始被应用于电子元器件^[13]、生物标记^[14]、 纳米探针^[15]和分析检测^[16-17]等领域。可以预测,荧光 碳量子点在FRET方面具有广阔的应用前景^[18-19]。

目前检测 TNP 的方法主要有红外和拉曼光谱 法^[20]、电化学法^[21]和色谱-质谱法^[22-23]等,国标使用的是 分光光度法和气相色谱法。上述的测定方法大多需要 较为昂贵的仪器设备,操作较为复杂,测定周期长,成 本高,效率低,并采用现有物质作为探针试剂实现 TNP的检测。随着碳量子点作为荧光探针技术的发 展,碳量子点荧光探针表现出简便、快速和高灵敏度的 分析特征,并在食品检测、药物分析、环境监测和生物 测定等领域应用广泛。本文以中药材厚朴为碳源,通 过微波法制备得到一种新型荧光碳量子点,基于 TNP 对荧光碳量子点的荧光猝灭作用,构建了 TNP荧光探 针,发展了一种能够快速、高效地检测 TNP的新方法。

2 实 验

2.1 仪器与试剂

使用的仪器包括:日本日立公司F-2700荧光分光 光度计;荷兰Philips-FEI公司TECNAI 10透射电子 显微镜(TEM);日本岛津公司UV-2550紫外-可见分 光光度计;美国热电公司Thermo escalab 250XiX射线 光电子能谱仪(XPS);KQ-50E超声波反应器;XH- 300UL 微波反应器; PHS-3C 酸度计; FW-135 中草药粉碎机; FA2104N 分析天平; TG20-WS 台式高速离心机。

使用的试剂包括:厚朴(四川达州产);0.1 mol/L NaH₂PO₄-Na₂HPO₄缓冲溶液(PBS);苯酚(Phenol)、 TNP、2,4-二硝基苯酚(2,4-DNP)、2,6-二硝基苯酚 (2,6-DNP)、2-硝基苯酚(2-NP)、4-硝基苯酚(4-NP)、 TNT、2,4-二硝基甲苯(2,4-DNT)、2,6-二硝基甲苯 (2,6-DNT)、2-硝基甲苯(2-NT)、4-硝基甲苯 (4-NT)、1,3,5-三硝基苯(TNB)、2,4-二硝基苯(2, 4-DNB)、2,6-二硝基苯(2,6-DNB)、2-硝基苯(2-NB)、4-硝基苯(4-NB)、3,5-二硝基苯甲酸(DNBA)、 硝基甲烷(NM),均购于国药集团化学试剂有限公司。 所有试剂均为分析纯,实验用水为二次蒸馏水。

2.2 实验方法

2.2.1 厚朴荧光碳量子点的制备

荧光碳量子点以中药材厚朴为碳源,通过微波加 热反应一步制备。将厚朴在40℃下恒温干燥后,粉碎 过筛备用。称取1.00g已准备好的厚朴粉末置于 50mL烧瓶中,加入30mL蒸馏水,超声分散30min, 在900W的功率下,进行微波加热10min。随着加热 时间的延长,溶液颜色逐渐变深,从无色变为黄色,最 终变为深棕色。将反应物过滤,去除大颗粒杂质,再将 滤液进行离心分离,最后得到深棕色厚朴荧光碳量子 点溶液。

2.2.2 微波加热时间的确定

选取微波加热时间分别为4、6、8、10、12 min进行 平行实验。当微波加热时间小于10 min时,制备的厚 朴荧光碳量子点荧光强度逐渐升高;微波加热时间大 于10 min后,荧光强度反而降低;微波加热时间为 10 min时,荧光强度最大,发光效率最高。故确定微波 加热最佳反应时间为10 min。

2.2.3 荧光量子点产率的测量

采用相对量子产率测定法测量碳量子点的量子产 率^[23],其公式为

$$\Phi_{\rm S} = \Phi_{\rm R} (G_{\rm S}/G_{\rm R}) (\eta_{\rm S}/\eta_{\rm R})^2, \qquad (1)$$

式中:Φ为量子产率;G为发射积分面积与吸收值的斜 率,下标S和R分别为样品和标准物质;η为折射率。

2.2.4 荧光碳量子点与TNP的作用

将 400 μ L 荧光碳量子点溶液(20 mg/L)和1 mL PBS(0.1 mol/L, pH 6.6)加入到5 mL 塑料试管中, 混合均匀。再加入一定量不同浓度的 TNP 溶液,最 后加蒸馏水补充至总体积4 mL,超声分散,涡旋混 匀。2 min后,于光电倍增管电压 400 V、狭缝宽度 5 nm、室温(约 25 °C)条件下测定其荧光强度。将空 白体系平行测定 3次的荧光强度平均值记为 I_0 ,将含 不同浓度 TNP 的样品体系平行测定 3次的荧光强度 平均值记为 $I, (I_0 - I)/I_0$ 为 TNP 样品体系对空白体系

研究论文

第 59 卷 第 21 期/2022 年 11 月/激光与光电子学进展

征,如图1(a)所示。从TEM图中可以看出,荧光碳量

子点分散均匀,无团聚现象,为球形或类球形材料。荧

光碳量子点的尺寸主要分布在4~6 nm,平均粒径为5 nm。将荧光碳量子点用XPS进行元素组成分析,如

图 1(b)所示,荧光碳量子点的主要成分为C和O。在

284.79 eV 出现的峰为 C (1 s), 其原子数分数为

58.08%;在532.47 eV出现的峰为O(1 s),其原子数

荧光的猝灭效率。根据厚朴荧光碳量子点在 320 nm 波长激发下的荧光猝灭效率实现对 TNP 含量的分析 检测。

3 结果与讨论

3.1 荧光碳量子点的表征

3.1.1 TEM和XPS表征

用 TEM 对荧光碳量子点进行了形貌和尺寸表

分数为41.92%。

图 1 荧光碳量子点形貌及元素表征。(a)荧光碳量子点 TEM 图;(b) 荧光碳量子点 XPS 图 Fig. 1 Fluorescent carbon dots morphology and element characterization. (a) TEM image of fluorescent carbon dots; (b) XPS image of fluorescent carbon dots

3.1.2 荧光光谱和吸收光谱表征

碳量子点的光学性质通过吸收光谱和荧光光谱进 行考察,其测试结果如图2所示,碳量子点的质量浓度 为20 mg/L,TNP的浓度为100 μmol/L。在图2(a)的 荧光光谱图中,碳量子点的最大激发波长为320 nm。 当激发波长减小时,碳量子点表现出荧光独立性。此 时,荧光强度随激发波长的增加而增大,其最大发射波 长基本保持不变。当激发波长增大时,碳量子点表现 出荧光依赖性。此时,荧光强度随着激发波长的增加 而减小,其最大发射波长逐渐发生红移。以硫酸奎宁 为标准物质($\Phi_{R} = 0.54, 1 \text{ mol/L H}_{2}\text{SO}_{4}$),在 320 nm 波长的激发下,荧光碳量子点的量子产率 $\Phi_{s} = 0.14$ 。 在图 2(b)中,Ex为吸收光谱,Em为发射光谱,从吸收 光谱图可知碳量子点的最大吸收波长为 280 nm,TNP 的最大吸收波长为 355 nm,TNP 的吸收峰与碳量子点 的荧光发射峰有部分重叠,符合 FRET 条件要求^[24]。

Fig. 2 Fluorescent carbon dots spectrographs. (a) Fluorescent spectra of carbon dots; (b) absorption spectra of carbon dots and TNP

3.2 碳量子点作为荧光探针检测TNP

3.2.1 pH条件对检测的影响

溶液的 pH 值是影响碳量子点荧光强度的重要因 素之一,因此在检测 TNP之前需对不同 pH 值进行条 件优化。实验过程中,通过加入 PBS 来调节反应体系 的 pH 值,实验结果如图 3 所示,吸收光波长 λ_{ex}为 320 nm,碳量子点的质量浓度为 20 mg/L, TNP 的浓 度为 40 μmol/L。在选取的 pH 值范围内(0.1 mol/L PBS pH 值: 4.4, 5.8, 6.2, 6.6, 7.0, 7.4, 8.0, 9.3),空白体系的荧光强度值(*I*₀)和 TNP 样品体系的 荧光强度值(*I*)变化不大,说明碳量子点在此实验条件 下荧光性能稳定,用此方法检测 TNP 受 pH 值影响较

第 59 卷 第 21 期/2022 年 11 月/激光与光电子学进展

图 3 不同 pH 值对碳量子点荧光强度的影响

Fig. 3 Effect of different pH on fluorescent intensity of carbon dots

小。从荧光猝灭率来看,变化相对稳定,当pH=6.6时, $(I_0 - I)/I_0$ 最大,所以选择 pH=6.6作为体系的最佳 pH值。

3.2.2 反应时间对检测的影响

按 2. 2. 4 节中的实验方法,考察了 TNP 与碳量子 点相互作用 60 min 内荧光强度的变化情况,检测结果 如图 4 所示,时间选取 0、2、5、10、20、40、60 min,吸收 光波长 λ_{ex} 为 320 nm,碳量子点的质量浓度为 20 mg/L, TNP 的浓度为 40 μ mol/L, pH 值取 6.6。向体系加 入 TNP 相互作用,在 2 min之前, I_0 、I和(I_0 -I)/ I_0 有一 定的波动,相互作用 2 min 后,各项指标保持平稳,实

图 4 不同反应时间对碳量子点荧光强度的影响 Fig. 4 Effect of different reaction time on fluorescent intensity of carbon dots

验表明可以通过碳量子点建立稳定的 TNP 分析平台。为了实现快速检测 TNP 的目的,选择 2 min 作为 TNP 与碳量子点相互作用的最佳时间。

3.2.3 碳量子点对TNP检测的选择性影响

为了考察其他结构相似物对检测 TNP 的影响,按 实验方法对一些结构相似物进行了选择性检测,实验 结果如图 5 所示,吸收光波长 λ_{ex} 为 320 nm,碳量子点 的质量浓度为 20 mg/L, TNP 的浓度为 40 μ mol/L, pH 值取 6.6。当样品体系中的 TNP 被相同浓度的结 构相似物替换时,(I_0 -I)/ I_0 很小,在规定的误差范围之 内,说明该方法对检测 TNP 具有高度的选择性。

图 5 其他结构相似物对碳量子点荧光强度的影响 Fig. 5 Effect of other nitrophenols on fluorescent intensity of carbon dots

3.2.4 结构相似物对检测的影响

为了探究结构相似物对检测 TNP 的干扰,在 TNP浓度为40 μ mol/L条件下,实验考察了含30倍浓 度的2,4-DNP、4-NP、2,6-DNT、TNB溶液,60倍浓度 的2,6-DNP、TNT、2-NT、2,4-DNB、2-NB溶液和 120倍浓度的2-NP、2,4-DNT、4-NT、2,6-DNB、4-NB 溶液对检测 TNP 的影响,实验结果如表1所示。各项 中的(I_0 -I)/ I_0 值都接近 TNP 对碳量子点的荧光猝灭 率(79.5%),可见结构相似物均不干扰荧光碳量子点 探针对 TNP 的检测。

	表1 干扰实验结果
Table 1	Interference experiment results

Interference	Concentration /	$[(I_0 - I) /$	Relative standard	Interference	Concentration /	$[(I_0 - I) /$	Relative standard
ion	$(mmol \cdot L^{-1})$	I_0] / %	deviation / %	ion	$(mmol \cdot L^{-1})$	$I_0] / \%$	deviation / %
2,4-DNP	1.2	80.5	1.0	2,4-DNB	2.4	79.7	2.1
4-NP	1.2	79.9	1.2	2-NB	2.4	79.4	1.2
2,6-DNT	1.2	79.6	3.0	2-NP	4.8	79.8	0.8
TNB	1.2	78.0	1.7	2,4-DNT	4.8	79.2	2.1
2,6-DNP	2.4	79.3	2.2	4-NT	4.8	79.2	1.4
TNT	2.4	79.4	1.7	2,6-DNB	4.8	79.4	0.7
2-NT	2.4	79.9	0.7	4-NB	4.8	79.6	2.0

3.2.5 不同浓度TNP的检测

在最佳实验条件(吸收光波长λ_{ex}为320 nm,碳量

子点的质量浓度为20 mg/L,pH值取6.6。)下,考察不同浓度TNP对碳量子点荧光强度的影响,如图6所示。

研究论文

第 59 卷 第 21 期/2022 年 11 月/激光与光电子学进展

加人不同浓度的 TNP(0, 0.8, 1, 2, 4, 8, 10, 20, 40, 80 µmol/L)后,碳量子点发生不同程度的荧光猝灭 [图 6(a)],而且 lg(*I*₀/*I*)与 TNP的浓度呈规律性变化 [图 6(b)]。在考察的 TNP浓度范围内,随着 TNP浓度的增大,碳量子点的荧光强度逐渐降低,碳量子点表现出荧光依赖性;同时 lg(*I*₀/*I*)与 TNP 在 0.8~80 µmol/L浓度范围内呈良好的线性关系,线性方程为

 $lg(I_0/I) = 0.01688c + 0.00986(c为TNP浓度), 相关$ $系数 R=0.9997; 检测限(<math>3s/\kappa$, n=11, s为空白标准 偏差, κ 为实测样品的斜率, n为测定次数)为 160 nmol/L。与其他荧光传感器检测TNP文献报道 进行比较(表2),结果表明,该分析方法对TNP的检 测具有较高的灵敏度,可在实际生活中的TNP检测 中推广使用。

Fig. 6 Linear plot of the TNP detection method. (a) Fluorescent spectra of carbon dots of different concentrations of TNP; (b) linear calibration curve

表 2	不同TNP荧光检测方法比较	

Table 2 Comparison of different fluorescent methods for TNP detection

Detection probe	Linear range $/(\mu mol \cdot L^{-1})$	Limit of detection $/(nmol \cdot L^{-1})$	Reference	
Silicon nanoparticles	0.1-524	29	[2]	
A	0.1-5	285		
A-cyanostildene derivatives	0.2-10	1960	[0]	
Nitrogen-doped graphene quantum dots (N-GQDs)	1.0-60	300	[10]	
C-dots with malonic acid and urea	0.1-26.5	51	[24]	
Copper nanoclusters	0.8-100	120	[25]	
Fluorescent organic nanoparticle	2.2-35	2200	[26]	
Amine-capped carbon dots	1.0-500	1000	[27]	
ZnSe QDs	2.0-250	12400	[28]	
C-dots	0.8-80	160	This work	

4 结 论

以中药材原药厚朴为原料,采用一步微波法成功 制备荧光碳量子点。碳量子点的平均粒径为5nm,量 子产率为0.14,最大吸收波长为280nm,最大激发波 长为320nm。基于碳量子点与TNP的荧光共振能量 转移机制,构建了以碳量子点作为荧光探针检测TNP 的新方法。该方法对TNP的检测范围是0.8~ 80 μmol/L,检测限为160 nmol/L,同时具有响应速度 快(2 min之内)、选择性好、无干扰等特点,可用于实际 样品中TNP的高选择性、快速和灵敏检测。

参考文献

[1] Rong M C, Lin L P, Song X H, et al. A label-free fluorescence sensing approach for selective and sensitive detection of 2, 4, 6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets[J]. Analytical Chemistry, 2015, 87(2): 1288-1296.

- [2] Han Y X, Chen Y L, Feng J, et al. One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2, 4, 6-trinitrophenol in aqueous solution [J]. Analytical Chemistry, 2017, 89(5): 3001-3008.
- [3] Venkatramaiah N, Kumar S, Patil S. Fluoranthene based fluorescent chemosensors for detection of explosive nitroaromatics[J]. Chemical Communications, 2012, 48 (41): 5007-5009.
- [4] Ma Y X, Huang S, Deng M L, et al. White upconversion luminescence nanocrystals for the simultaneous and selective detection of 2, 4, 6-trinitrotoluene and 2, 4, 6trinitrophenol[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7790-7796.
- [5] Peng Y, Zhang A J, Dong M, et al. A colorimetric and fluorescent chemosensor for the detection of an explosive: 2, 4, 6-trinitrophenol (TNP)[J]. Chemical Communications, 2011, 47(15): 4505-4507.

第 59 卷 第 21 期/2022 年 11 月/激光与光电子学进展

研究论文

- [6] Ding A X, Yang L M, Zhang Y Y, et al. Complexformation-enhanced fluorescence quenching effect for efficient detection of picric acid[J]. Chemistry-A European Journal, 2014, 20(38): 12215-12222.
- [7] Tu N N, Wang L Y. Surface plasmon resonance enhanced upconversion luminescence in aqueous media for TNT selective detection[J]. Chemical Communications, 2013, 49(56): 6319-6321.
- [8] Sun X C, Wang Y, Lei Y. Fluorescence based explosive detection: from mechanisms to sensory materials[J]. Chemical Society Reviews, 2015, 44(22): 8019-8061.
- [9] Mukherjee S, Desai A V, Inamdar A I, et al. Selective detection of 2, 4, 6-trinitrophenol (TNP) by a π-stacked organic crystalline solid in water[J]. Crystal Growth & Design, 2015, 15(7): 3493-3497.
- [10] Lin L P, Rong M C, Lu S S, et al. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution[J]. Nanoscale, 2015, 7(5): 1872-1878.
- [11] Förster T. Zwischenmolekulare energiewanderung und fluoreszenz[J]. Annalen Der Physik, 1948, 437(1/2): 55-75.
- [12] Xu X Y, Ray R, Gu Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737.
- [13] Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Advanced Materials, 2011, 23(6): 776-780.
- [14] Zheng M, Li Y, Liu S, et al. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 23533-23541.
- [15] Deng X, Wu D. Highly sensitive photoluminescence energy transfer detection for 2, 4, 6-trinitrophenol using fluorescent carbon nanodots[J]. RSC Advances, 2014, 4 (79): 42066-42070.
- [16] 黄小梅,邓祥.荧光碳量子点制备及其作为荧光探针对 NO₃的检测[J]. 激光与光电子学进展, 2019, 56(7): 071602.

Huang X M, Deng X. Preparation of fluorescent carbon quantum dots and its application as probe for detection of nitrate ions[J]. Laser & Optoelectronics Progress, 2019, 56(7): 071602.

fluorescent N/Al co-doped carbon dots and its application

[17] 潘鹏涛, 邹凡雨, 职丽娟, 等. 氮/铝共掺杂碳点的制备及在H₂O₂检测中的应用[J]. 激光与光电子学进展, 2021, 58(9): 0916002.
Pan P T, Zou F Y, Zhi L J, et al. Synthesis of

in detection of hydrogen peroxide[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0916002.

- [18] Li W, Zhang Z H, Kong B, et al. Simple and green synthesis of nitrogen-doped fluorescent carbonaceous nanospheres for bioimaging[J]. Angewandte Chemie, 2013, 125(31): 8309-8313.
- [19] Wang C F, Wu X, Li X P, et al. Upconversion fluorescent carbon nanodots enriched with nitrogen for light harvesting[J]. Journal of Materials Chemistry, 2012, 22(31): 15522-15525.
- [20] López-López M, García-Ruiz C. Infrared and Raman spectroscopy techniques applied to identification of explosives[J]. TrAC Trends in Analytical Chemistry, 2014, 54: 36-44.
- [21] Chen P C, Sukcharoenchoke S, Ryu K, et al. 2, 4, 6trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires[J]. Advanced Materials, 2010, 22(17): 1900-1904.
- [22] Barron L, Gilchrist E. Ion chromatography-mass spectrometry: a review of recent technologies and applications in forensic and environmental explosives analysis[J]. Analytica Chimica Acta, 2014, 806: 27-54.
- [23] Badjagbo K, Sauvé S. High-throughput trace analysis of explosives in water by laser diode thermal desorption/ atmospheric pressure chemical ionization-tandem mass spectrometry[J]. Analytical Chemistry, 2012, 84(13): 5731-5736.
- [24] Fan Y Z, Zhang Y, Li N, et al. A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid[J]. Sensors and Actuators B: Chemical, 2017, 240: 949-955.
- [25] Deng X, Huang X M, Wu D. Förster resonance-energytransfer detection of 2, 4, 6-trinitrophenol using copper nanoclusters[J]. Analytical and Bioanalytical Chemistry, 2015, 407(16): 4607-4613.
- [26] Bhalla V, Gupta A, Kumar M. Fluorescent nanoaggregates of pentacenequinone derivative for selective sensing of picric acid in aqueous media[J]. Organic Letters, 2012, 14(12): 3112-3115.
- [27] Niu Q Y, Gao K Z, Lin Z H, et al. Amine-capped carbon dots as a nanosensor for sensitive and selective detection of picric acid in aqueous solution via electrostatic interaction[J]. Analytical Methods, 2013, 5 (21): 6228-6233.
- [28] Sharma V, Mehata M S. Rapid optical sensor for recognition of explosive 2, 4, 6-TNP traces in water through fluorescent ZnSe quantum dots[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 260: 119937.